

Product Manual

UltraDoser[®] 2K Liquid Nitrogen Dosing System

Designed and Built by:

Chart Inc.

46441 Landing Parkway Fremont, CA 94538 USA (800) 371-3303

Contents

Revision Log	iv
Preface	.1
General	.1
Features	.1
Kev Benefits	.1
Product Manual	1
Terms	2
Acronyms / Abbreviations	2
Safety	.3
General	.3
Safety Bulletin.	.4
Oxygen Deficient Atmospheres	.4
Nitrogen	.4
Receiving and Installation	.5
Receiving	.5
Unpacking.	.5
Installation	.5
Application Evaluation	.5
Support Stand Location.	.6
Mounting the UltraDoser Unit	.6
Connecting the Distribution Block	.7
Installing the Nozzle	.8
Positioning the Dosing Head	.8
Installing the Container Detect Sensor	.9
Installing the Timing Sensor	.9
Installing the Encoder	.9
Installing the 2K Controller	11
	10
	13
	13
Home Screen	13
	13
	14
Setup	14
	14
System Settings	15
	15
Creating a Desire	17
	17
	1/
	18
	18
	18
Dosing value Enabled	18
Graphs	18
	19
	21
Alarm History.	22

Daily Operating Procedures
Dura-Cyl Liquid Cylinder Fed System
Purging with Gaseous Nitrogen
System Start Up
System Shut Down
Liquid Cylinder Change Out Procedure
Bulk Tank (House Fed) System
Purging with Gaseous Nitrogen
System Start Up
System Shut Down
Service and Maintenance
Nozzle Change Out Procedure
Nozzle Cleaning Procedure
Purging with Gaseous Nitrogen
Troubleshooting
Specifications
UltraDoser Technical Specifications 31
Controller Technical Specifications 31
UltraDoser 2K Components 32
UltraDoser Body 32
Distribution Block 32
2K Controller 32
Inlet Filter 32
Bayonet Connection 32
Mounting Bracket Assembly 32
Dosing Head
Dosing Value Assembly 32
Value Confirm Assembly
Dosing Head Heater 22
$Dusing Nozzic(s) \dots \dots$
Vent Heater 22
Optional Components
Common Der la components
Common Replacement Parts
Sensor Positioning
Warranty
Appendix A

Revision Log

Revision Level	Date	Description
А	10/30/2015	Original
В	03/28/2017	Reformat
С	04/11/2017	Update part numbers on page 33 and add Purge Kit to page 35, new cover photo

Preface

General

The UltraDoser 2K LN₂ Dosing System is a multi-purpose liquid nitrogen dosing system utilizing advanced cryogenic technology and PLC programming. LN₂ is supplied to the UltraDoser system by a vacuum insulated hose and flows into the dosing head. A sensor detects the speed of the line (encoder compatible); a second sensor detects the presence of a container. When a container is detected, the dosing head opens and dispenses an exact amount of pure LN₂. A PLC (Programmable Logic Controller) is the brains behind integrating the sensors, controls and human interface.

Chart engineers designed an ultra-efficient system for low to medium production line speeds to dispense a precise dose of LN_2 into every container every time. The LN_2 gasifies and is either trapped in the container to add rigidity or escapes with oxygen to inert the headspace.

Features

- · Compact Size enables installation in limited spaces
- · Precise Dosing delivers consistent, accurate dosing
- Discrete Dosing up to 2000 containers per minute
- Discrete or Continuous Dosing change over defined by user
- SoftDose[™] Compatible Chart's proven technology for hot fill, powder, and granular applications
- RemoteDose[™] Capable* monitor and troubleshoot the system remotely thereby minimizing or eliminating system downtime**
- MicroDose[™] Capable designed specifically for tight pressure specifications
- IntelliDose[™] Capable automatic dose adjustments at any line speed between low/high points as defined by user.

* When paired with the 2K controller. Results achieved at Chart laboratory conditions.

**Access to the internal network is necessary for this function.

Key Benefits

- Lightweight PET reduce the weight of PET for cost and environmental savings
- Glass to PET Transition eliminate glass safety hazards and weight of containers

- Container Rigidity maintain container shape even with lighter weight containers
- Eliminate Paneling increase the internal pressure to offset paneling issues
- Oxygen Reduction create an inert environment to preserve product freshness
- Extend Shelf Life minimize oxygen levels
- Ease of Labeling consistent container rigidity creates an efficient labeling process
- Reduce Nitrogen Consumption Measurable and repeatable liquid doses
- Maximize Warehouse Storage Space increasing product stackability utilizing less square footage
- Stabilize Organic Products extend shelf life without preservatives

Product Manual

This manual is designed to be used in conjunction with the UltraDoser 2K Liquid Nitrogen Dosing System provided by Chart Inc. Chart makes no warranties, express or implied, regarding the content in this manual. Chart assumes no responsibility for any outcomes as a result of using this manual. If after reading this manual you are not confident in carrying out any task, please contact Chart's service team at 1-408-371-4932.

The safety requirements for operating the UltraDoser 2K and handling or transporting extremely cold liquid products are shown in the Safety section. Use this safety section as a "Safety Checklist" each time the equipment is being used.

In the Receiving and Installation section there are illustrations for proper connections as well as descriptions of components.

To learn how to adjust the UltraDoser system, refer to the Controller Adjustments section.

The Daily Operations Procedures section contains set-up and operation information along with system features and service and maintenance.

The remaining sections provide information on Service, Troubleshooting, Specifications and the Warranty provided by Chart.

Terms

Throughout this manual safety precautions will be designated as follows:

Warning! Description of a condition that can result in personal injury or death.

Caution! Description of a condition that can result in equipment or component damage.

: A statement that contains information that is important enough to emphasize or repeat.

Acronyms / Abbreviations

The following acronyms / abbreviations are used throughout this manual:

BAR	Pressure (Metric)
CIP	Clean-In-Place
CL	Center Line
СРМ	Containers Per Minute
EP	ElectroPneumatic
GN_2	Gaseous Nitrogen
HMI	Human Machine Interface
LN ₂	Liquid Nitrogen
mS	Milliseconds
O_2	Oxygen
PLC	Programmable Logic Controller
PN	Part Number
PSI	Pounds per Square Inch

Safety

General

Thank you for your purchase of Chart Inc's (Chart) UltraDoser 2K Liquid Nitrogen Dosing System. Chart has designed and fabricated your system with attention to detail and utilizing the leading cryogenic technologies to ensure a highly efficient and reliable system.

DO NOT use this product in a manner inconsistent with the instruction outlined in this manual.

NEVER alter the design, or perform service that is not consistent with the instructions outlined in this manual without prior written approval from Chart.

Strict compliance with proper safety and handling practices is necessary when using a cryogenic system. We recommend that all our customers re-emphasize safety and safe handling practices to all their employees and customers. While every possible safety feature has been designed into the system and safe operations are anticipated, it is essential that the user of the cryogenic system carefully read to fully understand all WARNINGS and CAUTION notes listed in this safety summary and enumerated below. Also read the information provided in the Safety Bulletin for Inert Gases following this Safety Summary. Periodic review of the Safety Summary is recommended.

Warning! Your UltraDoser 2K system may be fed by a vacuum insulated pipe system designed to contain pressurized, ultracold cryogenic liquids. These systems should only be serviced by trained personnel to avoid serious injuries such as freezing, oxygen deficient atmosphere and extremely high pressures.

External valves and fittings can become extremely cold and may cause painful burns to personnel unless properly protected. Personnel must wear protective gloves and eye protection whenever removing parts or loosening fittings. Failure to do so may result in personal injury due to the extreme cold and pressure in the system.

Warning! Accidental contact of liquid gases with skin or eyes may cause a freezing injury similar to a burn. Handle liquid so that it will not splash or spill. Protect your eyes and cover skin where the possibility of contact with liquid, cold pipes and equipment, or cold gas exists. Safety goggles or a face shield should be worn if liquid ejection or splashing may occur or cold gas may exit forcefully from equipment. Clean, insulated gloves that can be easily removed and long sleeves are recommended for arm and hand protection. Cuffless trousers should be worn over the shoes to shed spilled liquid.

Warning! If you are at all unsure of how to safely work on this system, STOP and contact Chart immediately at 1-408-371-4932.

Warning! Any configuration which allows a trapped volume of cryogenic liquid or cold gas must be protected by a pressure relief valve. As the cold liquid/ gas gains heat, the contents will expand and increase in pressure. A section not protected by an over-pressure relief valve will experience extremely high pressures and significant safety concerns.

DANGER

Warning! Over pressurization of containers can occur while using Chart's UltraDoser 2K system potentially bursting the containers. Proper calibration of the UltraDoser 2K system ensures optimum nitrogen doses to avoid over pressurization. Be sure to remove any containers that receive more than its proper LN₂ doses before sealing.

As with any cryogenic system, it should be observed that any non-insulated piping can get extremely cold and should not be touched by exposed skin. If the system requires maintenance, it should be shutdown and allowed to warm up.

Before removing parts or loosening fittings, empty the UltraDoser 2K of liquid and release any vapor pressure in a safe manner.

Safety Bulletin

Portions of the following information is extracted from Safety Bulletin SB-2 from the Compressed Gas Association, Inc. at <u>www.cganet.com</u>. Additional information on oxygen, nitrogen, and cryogenics is available in CGA Pamphlet P-9. Write to the Compressed Gas Association, Inc., 1235 Jefferson Davis Highway, Arlington, VA 22202.

Oxygen Deficient Atmospheres

The normal oxygen content of air is approximately 21%. Depletion of the oxygen content in air, either by combustion or by displacement with inert gas, is a potential hazard and users should exercise suitable precautions.

One aspect of this possible hazard is the response of humans when exposed to an atmosphere containing only 8 to 12% oxygen. In this environment, unconsciousness can be immediate with virtually no warning.

When the oxygen content of air is reduced to approximately 15 to 16%, the flame of ordinary combustible materials, including those commonly used as fuel for heat or light, may be extinguished. Somewhat below this concentration, an individual breathing the air is mentally incapable of diagnosing the situation because the onset of symptoms such as sleepiness, fatigue, lassitude, loss of coordination, errors in judgment and confusion can be masked by a state of "euphoria" leaving the victim with a false sense of security and well being.

Human exposure to an atmosphere containing 12% or less oxygen leads to rapid unconsciousness. Unconsciousness can occur so rapidly that the user is rendered essentially helpless. This can occur if the condition is reached by an immediate change of environment, or through the gradual depletion of oxygen. Most individuals working in or around oxygen deficient atmospheres rely on the "buddy system" for protection obviously the "buddy" is equally susceptible to asphyxiation if he or she enters the area to assist the unconscious partner unless equipped with a portable air supply. Best protection is obtainable by equipping all individuals with a portable supply of respirable air. Life lines are acceptable only if the area is essentially free of obstructions and individuals can assist one another without constraint.

If an oxygen deficient atmosphere is suspected or known to exist:

- 1. Use the "buddy system." Use more than one "buddy" if necessary to move a fellow worker in an emergency.
- 2. Both the worker and "buddy" should be equipped with self-contained or airline breathing equipment.

Nitrogen

Nitrogen (an inert gas) is a simple asphyxiate. It will not support or sustain life and can produce immediate hazardous conditions through the displacement of oxygen. Under high pressure this gas may produce unconsciousness even though an adequate oxygen supply sufficient for life is present.

Nitrogen vapors in air dilute the concentration of oxygen necessary to support or sustain life. Inhalation of high concentrations of this gas can cause anoxia, resulting in dizziness, nausea, vomiting, or unconsciousness and possibly death. Individuals should be prohibited from entering areas where the oxygen content is below 19% unless equipped with a self-contained breathing apparatus. Unconsciousness and death may occur with virtually no warning if the oxygen concentration is below approximately 8%. Contact with cold nitrogen gas or liquid can cause cryogenic (extreme low temperature) burns and freeze body tissue.

Persons suffering from lack of oxygen should be immediately moved to areas with normal atmospheres. SELF-CONTAINED BREATHING APPARATUS MAY BE REQUIRED TO PREVENT ASPHYXIATION OF RESCUE WORKERS. Assisted respiration and supplemental oxygen should be given if the victim is not breathing. If cryogenic liquid or cold boil-off gas contacts worker's skin or eyes, the affected tissue should be flooded or soaked with tepid water (105-115°F or 41-46°C). DO NOT USE HOT WATER. Cryogenic burns that result in blistering or deeper tissue freezing should be examined promptly by a physician.

Receiving and Installation

Receiving

The UltraDoser 2K LN_2 Dosing System is designed for variable speed filling lines up to 2000 containers per minute (under specific conditions). It will compensate for changes in line speed, ramp up, and ramp down conditions.

Unpacking

The UltraDoser 2K unit will arrive in a specially designed shipping crate. If the unit is intended to be moved from one location to another, storing the crate for future use is ideal.

Upon arrival of the UltraDoser 2K unit, it is advised to immediately inspect for any signs of damage. If any damage occurred in shipping, claims must be filed with the shipping carrier immediately prior to unpacking the unit.

All contents should be carefully inspected while unpacking the UltraDoser 2K unit. Things to check for upon arrival include:

- Dents in the UltraDoser unit
- · Male and female bayonets should be protected
- Proper number of bayonet clamps/flanges and o-rings (one set for every female bayonet)
- Any other components that were defined to ship loose

If there are any pieces listed on the packing slip and/or materials list not in the shipping crate, please contact Chart immediately at 1-800-371-3303.

Caution! When removing the UltraDoser unit from the crate, gently set it on the ground. DO NOT drop the UltraDoser unit! When transporting the unit through the facility be sure to carry with care. Take care not to run into walls or drag the UltraDoser unit on the ground. If not installed immediately, the UltraDoser 2K unit should be stored in a location that is out of the way of frequent traffic and will prevent dirt, water, or other debris from getting inside the system. Chart recommends storing the system in the crate when not in service.

Installation

Application Evaluation

The UltraDoser 2K system can be used for both inerting and pressurization applications. The application must be evaluated to determine the ideal location of the dosing head on the filling line.

- Inerting Inerting is the process of removing oxygen (O_2) from a container by dosing a relatively large amount of LN_2 in the container to inert. The liquid dose quickly converts into gas displacing air and oxygen from the container. The ideal location for the UltraDoser unit must allow for enough time between dosing and capping so that the liquid dose is converted into a gas.
- Pressurization Pressurization occurs by dosing a relatively small amount of LN_2 into a container. The liquid dose quickly converts into gas and the container is then capped or sealed to capture the expanding gas. The UltraDoser unit should be installed as close to the capper as possible.

34.00

Support Stand Location

The UltraDoser unit is supplied with a mounting bracket assembly. The assembly consists of the bracket attaching to the UltraDoser body and two clamps designed to fit on $1\frac{1}{2}$ " stainless steel rod. Chart can supply a prefabricated stand to accommodate the mounting bracket assembly. This stand can be utilized in almost all installations. If the Chart stand cannot be used in your installation, fabricating one with $1\frac{1}{2}$ " diameter rod or round bar will make installation of the UltraDoser 2K system simpler. The instructions below will assume installation of Chart's prefabricated support stand (Image 4).

- The UltraDoser unit can be installed on either side of a production line. Select the side that best suits the workplace. The mounting bracket assembly is installed straight back opposite to the arm from the factory. However, the UltraDoser body can be mounted in the mounting bracket such that the support stand is located on either side perpendicular to the arm (Images 1 - 3).
- 2. Measure the appropriate distance depending on the UltraDoser system configuration. This is the location for the installation of the support stand.
- 3. Mark the location of the stand and install the four 5/8" bolts included with the support stand in the proper location.

Mounting the UltraDoser Unit

Once the stand is installed, mount the UltraDoser unit on the stand using the supplied mounting bracket (Image 5).

Connecting the Distribution Block

The distribution block houses the electrical connectors and wiring interface between the operating parts of the UltraDoser unit and the 2K controller. There are five connections on the distribution block:

Image 6

Vent Heater (D-1)

Provides +24VDC power to the vent heater. A green light on the cable connector indicates that power is being made available to the vent heater.

Nozzle Heater (D-2)

Provides +24VDC power to the dosing head heater. A green light on the cable connector indicates that power is being made available to the dosing head heater.

Timing/Container Sensor (D-3)

Provides +24VDC power to the timing/container sensor and indicates sensor activity. A green light on the cable connector indicates that power is being supplied to the sensor. A yellow light will flash when a container is detected.

Dose Solenoid (D-4)

Provides +24VDC power to the solenoid valve assembly located on the dosing head. A green light on the cable connector indicates that power is being supplied to the solenoid valve. A yellow light will appear when the solenoid valve has been activated.

Confirm Sensor (D-5)

Provides +24VDC power to the confirm sensor assembly located on the dosing head. A green light on the cable connector indicates that power is being supplied to the confirm sensor. A yellow light will appear when the pneumatic cylinder has lifted the valve stem. Simultaneously, a yellow indicator will illuminate on the confirm sensor body.

Aux (D-6)

Not used.

Installing the Nozzle

Three nozzles are supplied with the UltraDoser 2K system - 0.040", 0.050", and 0.060". Custom sizes may be ordered from Chart.

- 1. Remove the dosing head heater.
- 2. Select a nozzle.
- 3. Insert the nozzle into the nozzle tool, threads out (Image 7).
- 4. Thread the nozzle into the dosing head area in a clockwise direction (Image 8 & 9). Do not over torque.
- 5. Re-apply the dosing head heater.

lmage 7

Image 9

Caution! Never use an ice-pick, screwdriver, torch or similar device on the dosing head (Image 7). The ribs of the internal bellows are a thin walled metal and the hole on the outer ring of the dosing head is a positive pressure port to help keep moisture out and ice from forming. High heat and puncture holes will destroy the vacuum insulation and VOID WARRANTY.

Positioning the Dosing Head

The dosing head should be directly over the container opening. The dosing head is typically installed 1/2" - 3/4" above the container opening (see Image 10). The UltraDoser unit must be manually adjusted to accommodate different sized containers running on the same production line.

Image 8

Image 10

Installing the Container Detect Sensor

The container detect sensor must be a PNP type sensor and is used to detect if containers are present on the line. Chart provides a PNP 18mm photoelectric sensor (Image 11) with the UltraDoser 2K system. Ideal sensor placement is about four to six pockets from the dosing head. If the sensor does not detect a container for the user defined number of seconds, the UltraDoser unit will stop dosing.

Image 11

Installing the Encoder

The speed sensor is installed to detect filling line speed and must be installed for the UltraDoser 2K to operate properly. Chart provides a PNP 12mm inductive proximity sensor (Image 12) with the UltraDoser 2K system. Chart highly recommends a SICK encoder (Image 13) be installed in lieu of a PNP sensor to increase the resolution of the speed output for better performance of the UltraDoser 2K at higher line speeds. The SICK encoder provided by Chart comes from the factory preset to 500 pulses per container.

Image 13

Installing the Timing Sensor

The timing sensor is installed to detect filling line speed and must be installed for the UltraDoser 2K system to operate properly. Chart provides a PNP 12mm inductive proximity sensor (Image 12) with the UltraDoser 2K system. Ideal sensor placement should provide a one-to-one signal and will vary for each filling line.

lmage 12

Only one channel is used to provide necessary pulse for the UltraDoser 2K system. For correct encoder functionality, shielded cabling must be used. The encoder should be grounded, either thru the mounting bracket or separate ground wire.

Encoder Cable Connections:

Encoder Pin No.	coder Function Wire Color*		Controller Pin No.
А	CH- A Output	Green or Blue	4
D	+DC Output	Red	1
F	DC Return	Black	3
G	Case Ground	White	2

*Wire color refers to the conductors of the shielded communication cable.

The encoder location should be accessible for installation and maintenance. The location may be a spindle to spindle connection where the encoder spindle may be integrated with the filler/capper spindle. If a gear is chosen which is not oneto-one with the container pockets the appropriate gearing ratios must be provided to ensure optimum dosing results.

Encoder Mounting Information

Ensure encoder is properly mounted and securely affixed so it will perform at its optimum capability. Follow the drawing below and mount with suitable hardware. Grounding is achieved by proper mounting of the encoder case. Ensure good electrical contact is made from the mounting flanges to an earthed bracket or other grounded mounting means. A mounting bracket (Image 14 below) is provided by Chart to assist in installation.

Installing the 2K Controller

Locate the ideal location for the 2K controller. Brackets are supplied to mount the controller on the Chart prefabricated support stand or 1-1/2" diameter rod or round bar. If Chart's prefabricated brackets are not utilized, the controller's mounting tabs can be utilized.

Image 15

On/Off Switch - Main power switch for the 2K controller

Dose Disable Push Button - Manual dose disable push button to disable dosing

Light Tower Status:

The indicator light provides a visual display of the operating status of the UltraDoser 2K.

Green - Normal Operation

Amber (solid) - Warning Condition; see "Alarms" section for additional information.

Amber (flashing) - Quick Service Mode

Red - Fault Condition; see "Alarms" section for additional information.

Caution! Upon manual dose enabling via the push button, a pop up confirm window will display on the Home screen. Push Yes/No to confirm (see Image 16).

The bottom of the 2K controller is the electrical "hub".

Image 17

Input Power (J1)

The 2K controller power cable (6ft) is connected to the 2K controller at port J1.

Distribution Cable (J2)

The 2K controller I/O (input/output) cable, a component of the distribution block, is connected to the 2K controller at port J2.

Tube 03

Tube 03 (UltraDoser Liquid Level) from the Gas Manifold Assembly is connected to the 2K controller at Tube 03.

Tube 04

Tube 04 (UltraDoser Supply Pressure) from the Gas Manifold Assembly is connected to the 2K controller at Tube 04.

Encoder (J5)

An encoder must be used to provide approximately 500 24v pulses per container. A PNP 12mm proximity speed sensor is provided as a back up to provide the 2K controller with minimal pulses that are used to calculate the line speed. The encoder (proximity sensor, if used) is connected to the 2K controller at J5.

Quick Service (J-6)

The quick service solenoid valve located on the gas manifold assembly is connected to the 2K controller at port J6.

Bottle Sensor (J-7)

A PNP bottle detect sensor connected to the 2K controller at port J7.

Network

An industrial Ethernet connection (8 pin M12) is provided to connect to the network for remote access to the HMI display.

Controller Adjustments

2K Controller Adjustments

Note:

In general, the color of the field's backfill dictates the functionality. Black = Read only, Blue = PLC calculated value, Yellow = User entered value, Red/Green = Toggle feature.

Home Screen

The Home Screen displays pertinent information and actual parameters currently running. The Home Screen is a "readonly" screen; any changes need to be made on the respective screens. The only active buttons are located in the top left portion of the screen; the Chart logo and the country flag (see the About section for more information). From the "Home" screen, the operator can navigate to other screens and functions using the navigation buttons on the bottom of the screen.

CHART		Home		10/09/1 14:02:5
Dose Mod	e		Recipe	LN2 Level
Dose Delay (mS)	0.0		0 %
Dana Duratian	(=0)	0.0	Dosing Valve	
Dose Duration	(ms)	0.0	Disabled	
Line Spee (CPM)	d	0	Inlet	
Pulses (Cont. to Co	nt.)	0	0,0psi	
Home	Setup	Recipes	Maintenance	Alarms

Home Screen overview and meanings:

- Dose Mode This is the Dose Delay Mode, either "Fixed" or "Auto".
- Dose Delay (mS) The Dose Delay should be a steady number proportionally between 'Distance Delay Calibration' Points High and Low.
- Dose Duration (mS) The Dose Duration should be a steady number proportionally between 'Dose Duration Calibration' Points High and Low.

- Pulses (container to container) This is the pulse count between timing sensors. A low number indicates a low resolution and a high number indicates the possibility of exceeding 20,000 pulses per second.
- Line Speed (CPM) This number indicates the bottles per minute (or per hour) and should be steady.
- LN₂ Level This is the calculated liquid nitrogen level from the level sensor.
- Inlet Pressure This is the calculated inlet pressure from the inlet pressure sensor.

About

On the "Home" screen, pressing the Chart logo will show the "About" screen. Chart's contact information as well as the 2K controller's PLC and HMI version and default IP address will be available on this screen.

CHART		About		11/11/13 12:51:55
	Chart I 161 Ba San Jo Teleph Service Websi	ndustries sypointe Parkway lse, CA 95134 US lone: +1 800-371 e : +1 408-371-4 te : www.chartdos	SA 3303 932 sers.com	
	PLC:		HMI:	
Version:	13110	7_2KS_V10	131107_2KS_V1	0
IP Addre	ss: 192.1	68.0.2	192.168.0.3	
Subnet:	255.2	55.255.0	255.255.255.0	
		N		
Home	Setup	Recipes	Maintenance	Alarms
		L	المحمدال	

Languages

On the "Home" screen, pressing the flag will show the "Languages" sub-screen. Select the desired language setting from this screen.

Flag	Language
USA	English
Mexico	Spanish
Brazil	Portuguese
UK	English
Spain	Spanish
Portugal	Portuguese
China	Simplified Chinese
Poland	Polish
Italy	Italian

Selecting a language automatically determines all settings including the date, pressure measurements, and distance measurements. All flag selections, except for USA, default to metric settings.

Setup

Selecting the "Setup" navigation button will prompt two subnavigation buttons: "Systems Settings" and "Calibration". Access to these screens will require log in with user ID and password. See the "Access and Passwords" section for additional information.

CHART -		Home		10/09/13 14:03:47
Dose Mode			Recipe	LN2 Level
Dose Delay (n	nS)	0.0		0 %
Doge Duration	(mS)	0.0	Dosing Valve	
Dose Duranoli]	Disabled	
(CPM)	Calibration	0	Iniet	
Pulses (Cont. to C	System Settings	0	0.0 psi	
Home	Setup	Recipes	Maintenance	Alarms

Access and Passwords

Α

Changing any parameters on any screen requires a user ID and password. When accessing the changeable boxes, a logon dialog box will appear requesting a user ID and password. The 2K controller has been programmed to a default user and password as described below.

User:	Α
0.501.	

Password:

Once logged in, any and all user information is changeable. Care must be taken when entering user and password information to prevent locking out personnel.

User may be prompted to re-enter user ID and password information if the 2K controller is idle for more than 5 minutes.

LEVEL: 1	-
User ID	_
Password	
ок	Cancel

System Settings

From "Setup", select "System Settings" to change system settings such as date/time, reset batch actuations, and hide/ show the alarm banner.

CHART System Settings					
Date/1	ime Set	Dosing Head	Actuations		
Date	MM/DD/YYYY	Total Actuations	0		
Current Date	10/31/13	Batch Actuations	0		
Set Date			Reset		
Time Current Time Set Time	hh:mm:ss 9:22:29 : :	Alarm Banner	Security Log out		
Home	Setup	cipes Maintenan	ce Alarms		

System Settings overview and meanings:

- Date/Time Set The factory will program and set the current date and time. Any changes can be made at the 'Set Date' or 'Set Time' field.
- Dosing Head Actuations Displays the total number of actuations and the batch number of actuations. Total will show the life of the system while batch can be reset.
- Banner Alarm Hide or show alarm conditions on the "Home" screen. If the banner is hidden, a small colored circle will display next to the flag on the "Home" screen. If the alarm is shown, the alarm condition will display and cover the first 0.5" (12.7mm) of the top of each screen.
- Security Another way to log in/out to change user settable parameters.

Calibration

From "Setup", select "Calibration" to set up the dosing parameters. Determine the desired Dose Mode: Auto or Fixed. Auto Dose Mode compensates for any changes in line speed by auto-adjusting the distance delay and dose duration. Fixed Dose Mode does not compensate for any changes in line speed. The distance delay and the dose duration will remain unchanged.

Proper set up of the "Calibration" screen is essential to the successful operation of the UltraDoser 2K system. If after reading this section you are still unsure, please contact Chart's service group at +1 408-371-9313.

Auto Dose Mode

CHART		Calib	ration		user: A	10/24/13 12:19:41
Doser Calibra	ition					
Distance	Delay Calibra CPM	tion Jistance Jelay (in)	D	ose Durati	CPM Du	tion Dose Iration (mS)
Calibration Point - High	0	0.00	Cali Poir	ibration nt - High	0	0.0
Calibration Point - Low	0	0.00	Cali Poir	ibration nt - Low	0	0.0
Calculated (in)	0.00	СРМ	0	Calcul	ated (mS)	0.0
Container CL to CL (in)	0.00	Dose Mode	Auto	Continu Spec	ious Dosin ed (CPM)	9 0
Home	Setup	Rec	ipes	Maintena	ince	Alarms

Enter Setup Parameters for Auto Dose Mode:

1. Measure and enter the distance between two containers, centerline to centerline in the 'Container CL to CL' field. See image below for additional information in determining this value.

- 2. Enter the 'Continuous Dosing Speed (CPM)' This is the maximum speed at which the UltraDoser 2K will dose in discrete (pulse) mode. If the line speed exceeds this user entered value, the UltraDoser 2K will dose in continuous (stream) mode.
- 3. Distance Delay Calibration Point High CPM Enter the CPM of the fastest operating line speed.
- 4. Distance Delay Calibration Point High Distance Delay (mm) Enter 10% of the 'Container CL to CL' value as a starting point and verify with a high speed camera or similar. Adjust accordingly.

Measurement for Distance Delay Calibration Point High is impossible to measure. It will need to be verified by high speed camera. **Dose too early = increase delay, dose too late = decrease delay.**

- 5. Distance Delay Calibration Point Low CPM Enter the CPM of the slowest operating line speed.
- 6. Distance Delay Calibration Point Low Distance Delay (mm) - Jog the filler until timing sensor is activated (distribution block D-3 cable, yellow light). Measure the distance from the center of the dosing head to the leading edge of the bottle. See images below for additional information in determining this value. This value is ~75% of the 'Container CL to CL' value. Verify with a high speed camera or similar. Adjust accordingly.

- 9. Dose Duration Calibration Point Low CPM Enter the CPM of the slowest operating line speed.
- Dose Duration Calibration Point Low Dose Duration (mS) - Enter the distance delay for the slowest operating line speed.
- 11. The calculated Dose Duration (mS) is displayed in the blue box under the Distance Delay Calibration setup.

Enter Setup Parameters for Fixed Dose Mode

1. Measure and enter the distance between two containers, centerline to centerline in the 'Container CL to CL' field. See image below for additional information in determining this value.

The system will automatically adjust for speed changes within the high/low calibration points. This system calculated value is shown in the 'Calculated' blue field.

- 7. Dose Duration Calibration Point High CPM Enter the CPM of the fastest operating line speed.
- Dose Duration Calibration Point High Dose Duration (mS) - Enter the distance delay for the fastest operating line speed.

- 2. Enter the 'Continuous Dosing Speed (CPM)'. This is the maximum speed at which the UltraDoser 2K will dose in discrete (pulse) mode. If the line speed exceeds this user entered value, the UltraDoser 2K will dose in continuous (stream) mode.
- 3. Enter the 'Fixed Time Delay'. This is the amount of time the system will wait (in milliseconds) after the bottle detect sensor has been detected until the dose duration (in milliseconds) begins.

4. Enter the 'Dose Duration'. This is the amount of time the system will dispense liquid from the dosing head (in milliseconds).

Recipes

Creating a Recipe

1. From the "Recipes" screen, press "Transfer" then "Upload from PLC" to upload the dosing parameters from the "Calibration" screen. The "Recipe Parameters" should auto populate.

CHART		Recipes		10: 10/31/13 09:22:49
<mark>Recipes</mark> Recipe in		Recipe F	Parameters	Value
	Trans	fer Download]	
	Ed	it Upload		
	Sav			
Home	Setup	Recipes	Maintenance	Alarms

2. Press "Yes/No" to confirm the action.

3. Name the recipes in the 'Recipes Name' value.

The 'Recipes Name' value will be used to identify recipes on the "Home" screen.

4. Press 'Save'. This name will appear on the "Home" screen when the recipe is 'Downloaded to the PLC' (as opposed to the name under "Recipe").

Activating a Recipe

CHART		Recipes		er: 10/24/13 12:20:00
Recipes		Recipe Pa	arameters	Value
Recipe in		#1 Distance	a Cal.CPM	5000.0
Manufactoria di chi antico di Comme		21 Distance	<mark>y Cal·Distance(in)</mark>	0.0
	Turneto	Download	Cal-CPM	100 0
	Transfe	to PLC	Cal-Durstion(nS)	3.D
			Cal-CPM	100 0
		Upload	Cal-Distance(in)	0.D
	Edit	from PLC	Cal·CPM	100 0
-		2 Duretion	Cal.Duration(mS)	3.0
		Container C	CL to CL (in)	0.0
		Continuous	Dosing Speed (CPN	100
	Save	Fixed Tine	Deley (nS)	3.D
		Recipes Nam	10	
(C.		<u></u>	_	
Home	Setup	Recipes	Maintenance	Alarms

- 1. Select and highlight the recipe you would like to use.
- 2. Press 'Transfer' then 'Download to PLC' to activate the recipe.
- 3. Verify that the recipe has been activated. The 'Recipes Name Value' should appear on the "Home" screen.

If any changes are made to the 'Calibration' settings of an activated recipe, the recipe will become deactivated and the current settings will take precedence. Verification of this can be seen on the "Home" screen at the Recipe field; a - will appear instead of the recipe name.

Maintenance

Selecting the "Maintenance" navigation button will prompt three sub-navigation buttons: 'Maintenance Modes', 'Graphs' and 'Inputs/Outputs'. Access to these screens will require log in with user ID and password. See Access and Passwords section for additional information.

Maintenance Modes

From "Maintenance" select "Maintenance Modes" to select and activate maintenance related features.

Dosing Valve Disabled

When the dosing valve is disabled, the maintenance modes become visible.

Quick Service - the quick service button engages a solenoid which routes gaseous nitrogen (GN_2) through the body to the dosing head. This is typically used to purge the system to ensure a clean pathway for liquid to flow. If a system has been left off for some time or exposed to air, moisture may have accumulated which could result in ice formation causing a blockage in the system. Purging by sending gaseous nitrogen will "dry out" the system.

e: Press and HOLD "Enable Quick Service" to activate.

Self Test - used to test the firing of the dosing solenoid. Pressing self test activates the solenoid for 5 pulses.

Drain - used to drain liquid nitrogen from the body of the UltraDoser through the dosing head.

Note: Press and HOLD "Normal" to activate.

Dosing Value Enabled

When the dosing valve is enabled, the maintenance modes become invisible.

CHART	Mair	ntenance Mo	odes	User: A	04/23/13 12:49:40
	_	Quick Sen	vice		
Dosing Valve		Self Te	est		
		Drain			
Home	etup	Recipes	Maintena	nnce /	Alarms

Graphs

From "Maintenance" select "Graphs" to view serves as the location for activation of the system once all the parameters have been set.

Timing Analysis Graph - This circular graph is updated left to right every few seconds with current CPM data. The graph shows the CPM timing of the last 250 containers. The important characteristic to watch is the consistency of the data. There should not be large spikes in data (inconsistent speed or spacing) or sine waves (line speed wobble).

This graph shows the steadiness of the filler's line speed. Variation in the line speed will cause variation in the dosing.

CHART		Graphs	Log OUT A	ser: 04/23/1 12:49:2
Timing Analysis	Dose Delay			
500 2000				Paused
250 1500				
0 1000-				
250 500-				СРМ
500 0 mS) (CPM)	Ĺ	ast 250 Contain	ers	0
Home	Setup	Recipes	Maintenance	Alarms

Dose Delay Bar Graph - The graph starts at the left with the sensing of a container by the timing sensor and ends at the right with the sensing of the next timing sensor. This is the time between timing sensors and is the total time allocated for the Dosing Delay and the Dosing Duration.

- Dosing Delay (mS) The yellow bar graph is the Dosing Delay time.
- Dosing Duration (mS) The green bar graph is the Dosing Duration or the time the LN₂ value is actuated.
- Realtime The graph updates in realtime showing continuous doses.
- End of Cycle (mS) This is the time after the LN₂ valve is turned off before the next timing sensor will arrive.

The graph should be consistent and not come close to the next timing sensor line or the Dose Delay may be too long, the Dose Duration may be too long, or the CPM may be too fast.

CHART		Graphs			02/13/13 10:45:30
Timing Analysis	Dose Delay				
Centerline #n		Time (mS)		Centerline #n + 1
Dose	Delay (mm)	35.7	Tim	e (mS) (CL to CL)	729.2
Dose Duration (mS)		15.6	15.6 End of Cycle (mS)		677.9
		СРМ	1200		
Home	Setup	Recip	oes	Maintenance	Alarms

Inputs/Outputs

Tower Light - Troubleshoot the tower lights

CHART	In	Inputs/Outputs				
Distribution Block	Bottle Sensor	Inlet Pressure	Liquid Level	Tower Light		
	Raw		Result			
Gr	een 🔵 📘	Force ON OFF				
R	ed 🔴 📘	Force Force ON OFF				
Ye	llow 🔵 📘	Force ON OFF				
Home	Setup	Recipes	Maintenance	Alarms		

These are the three colored lights on top of the 2K controller:

- Green Light press the 'Force On' toggle pushbutton to turn the green light on. Press the 'Force Off' toggle pushbutton to turn the greent light off. The force action is enabled when the pushbutton is red. Disable both forces to return the green light to normal operation.
- Red Light press the 'Force On' toggle pushbutton to turn the red light on. Press the 'Force Off' toggle pushbutton to turn the red light off. The force action is enabled when the pushbutton is red. Disable both forces to return the red light to normal operation.
- Yellow Light press the 'Force On' toggle pushbutton to turn the yellow light on. Press the 'Force Off' toggle pushbutton to turn the yellow light off. The force action is enabled when the pushbutton is red. Disable both forces to return the yellow light to normal operation.

Liquid Level - calibrate and set alarm threshold for Liquid Level

CHART		Inputs/	Outputs	LOG U	ser: 04/23/1 12:48:4
Distribution Block	Bottle Sensor	In Pres	let sure	Liquid Level	Tower Light
			[Alarm Th	nresholds
Raw Level	0.0			Level (%)	Time (sec)
Officiat Lawal	0.0	0%	Very Low	0.0	0.00
Oliset Level	0.0	Calibrate	Low	0.0	0.00
Forced Level (%)	0.0	Force	High	0.0	0.00
Current Level (%)	0.0	100% Calibrate			
Home	Setup	Rec	ipes Ma	intenance	Alarms

- Raw Level This is the raw reading from the PLC analog input.
- 0% Calibrate Push this pushbutton when calibrating at the zero Liquid Level.

- Offset Level After calibrating the liquid level at zero level by pushing the '0% Calibrate' pushbutton the raw reading will become the Offset Level.
- 100% Calibrate Push this pushbutton when calibrating at the 100% Liquid Level.
- Current Level % The blue box indicates the current liquid level.
- Forced Level % You can force a liquid level by typing a value in the yellow input box and pressing the 'Force' toggle.
- Alarm Thresholds The thresholds low and high liquid level alarms can be set by typing an alarm threshold % value and associated time before the alarm occurs into the yellow input box.

Inlet Pressure - Calibrate and set alarm threshold for Inlet Pressure.

- Raw Inlet Pressure This is the raw reading from the PLC analog input.
- Offset Inlet Pressure After calibrating the inlet pressure at zero level by pushing the 'Offset' pushbutton the raw reading will become the inlet pressure offset.
- Final Inlet Pressure % The blue box indicates the current inlet pressure.
- Forced Inlet Pressure % You can force an inlet pressure by typing a value in the yellow input box and pressing the 'Force' toggle.
- Alarm Thresholds The thresholds low and high inlet pressure alarms can be set by typing an alarm threshold % value and associated time before the alarm occurs into the yellow input box.
- LN₂ Source Press the 'LN₂ Source' toggle to choose the source of liquid nitrogen.

Bottle Sensor - set the functions of the bottle detect sensor.

The Bottle Sensor is used to detect bottles moving under the dosing head.

- Result This is the current status of the Bottle Sensor. When illuminated green, bottles are being sensed, either from the sensor or the 'Bypass Enabled/Disabled' pushbutton.
- Bypass Enabled/Disabled Pushbutton Provides the ability to override the bottle detect sensor. Ideal if the bottle detect sensor goes bad, the doser will still run. When 'Enabled' if there is no bottle detection for the user defined seconds 'No Bottles (sec)', the system will stop dosing liquid nitrogen.
- Not Bottles (sec) If 'Bypass Enabled' if there is no bottle detection for the user defined seconds entered in this field.

Distribution Block - Troubleshoot the distribution block sensors/connections.

These digital inputs and outputs replicate the lights on the Distribution Block.

- Speed Sensor (digital input) Usually this is the status of the encoder pulses.
- Timing Sensor (digital input) This is the status of the one per bottle sensor.

- Valve Confirm (digital input) This is the status of the LN₂ valve actuator sensor.
- Bottle Detect (digital input) This is the status of the bottle sensor.
- Dose Disable (digital input) This is the status of the Dose Disable.
- Quick Service (digital output) This is the status of the Quick Service function.
- Dose Solenoid (digital output) This is the status of the Dose Solenoid LN₂ valve actuator.

Alarms

Two alarm screens are provided: Alarms and Alarm History. Alarms are displayed on the 'Alarms' screen when they are currently active and are retentively displayed on the "Alarm History" screen.

Alarm conditions do not stop liquid nitrogen dosing.

CHART		Alarms		User: 09/25/13 19.18:56
Time Date))]
Up	Down		More Info	
		1		
Home	Setup	Recipes	Maintenance	Alarms

Alarm conditions are shown on the "Alarms" screen. Information to resolve the alarm can be found by highlighting the alarm condition and pressing 'More Info'.

Warning Level Alarms - These warning alarms are provided to assist in troubleshooting any lack of functionality. These warning alarms trigger a solid yellow light.

Alarm Type	Description
WARN #1	Started Dosing with no shutdown faults. (green) - gives a green starting reference on the alarm history screen.
WARN #2	Dosing is Disabled Dosing has been manually disabled from the HMI.
WARN #3	Continuous Dosing CPM threshold exceeded. - The actual CPM exceeds the 'continuous dosing' setpoint.
WARN #4	Liquid Level too low Check the Liquid Level sensor or calibration
WARN #5	Liquid Level too high - Check the Liquid Level sensor or calibration.
WARN #6	Inlet Pressure too low Check the Inlet Pressure sensor or calibration.
WARN #7	Inlet Pressure too high Check the Inlet Pressure sensor or calibration.
WARN #8	Dose Delay too long Dose delay was longer than the timing sensor interval. Check the Dose Delay setpoint.

Level 2 Alarms - These sensor alarms require checking sensors if persistent. These alarms trigger a solid red light.

Alarm Type	Description
FAULT #20	Speed Sensor Pulses not seen on input #0 Check the wiring to input #0, 24VDC power, or the Speed Sensor.
FAULT #21	Speed Sensor Pulses not seen on input #4 Check the wiring to input #4, 24VDC power, or the Speed Sensor.
FAULT #22	Timing Sensor Pulses not seen on input #1. - Check the wiring to input #1, 24VDC power, or the Pocket Sensor.
FAULT #23	Container Sensor not seen on input #12 Check the wiring to input #12, 24VDC power, or the Bottle Present Sensor.
FAULT #24	Valve Confirm Sensor Pulses not seen on input #3 Check the wiring to input #3, 24VDC power, or the Valve Confirm Sensor.
FAULT #25	Liquid Level very low Check the Liquid Level sensor or calibration.
FAULT #26	Inlet Pressure very high Check the Inlet Pressure sensor or calibration.

Level 3 Alarms - These alarms are severe internal control wiring problems. These alarms trigger a solid red light.

Alarm Type	Description
FAULT #32	Internal PLC error. PWM Pulses not seen on input #2 Check the wiring to input #2 or 24VDC power.
FAULT #33	Internal PLC error. PWM Pulses not seen on input #6 Check the wiring to input #6 or 24VDC power.
FAULT #34	Internal PLC error. PWM Pulses not seen on input #8 Check the wiring to input #8 or 24 VDC power.
FAULT #35	Internal PLC error. PWM Pulses not seen on input #10 Check the wiring to input #10 or 24VDC power.

Level 5 Alarms - These alarms disable dosing. These alarms trigger a solid red light.

Alarm Type	Description
FAULT #50	Estop PB not seen on input #14 The red mushroom pushbutton on the front of the Doser control panel is pushed.
FAULT #51	Remote Disable on The remote Doser disable is active.
FAULT #53	Bottle Sensor Pulses seen too fast Check the encoder. Too many pulses were detected than are allocated between timing sensor signals.

Alarm History

The alarm screen automatically clears itself of fault conditions once the fault itself has been cleared. The Alarm History screen is similar to the Alarm screen but keeps a total history of all fault conditions. The alarm log does not automatically clear the faults so these conditions are kept until manually cleared by the administrator.

CHART	A	larm Histor	y	06/13/13 11:57:24
Time Date				
Up	Down			
Home	Setup	Recipes	Maintenance	Alarms

Daily Operating Procedures

The UltraDoser 2K System can be fed by either a portable Dura-Cyl[®] Liquid Cylinder or a bulk tank (house fed) liquid nitrogen system.

Dura-Cyl Liquid Cylinder Fed System

Note:

 LN_2 is -320°F (-196°C). Any water and/or moisture can cause ice which will affect the performance of the UltraDoser 2K system. Providing a positive pressure of GN_2 (also know as purging) to the UltraDoser unit before introducing LN_2 into the body will eliminate many performance interruptions.

Purging with Gaseous Nitrogen

The UltraDoser unit must only be purged with gaseous nitrogen. Chart recommends the UltraDoser unit be purged when not in use. However, this may not be practical for all operators. At a minimum, the UltraDoser unit should be purged to eliminate any water that may be inside the unit after installation and prior to startup. The UltraDoser reservoir may also require purging when there is liquid nitrogen flowing out of the vent. The UltraDoser reservoir must also be purged when the nozzle becomes frozen shut. 1. Attach the CFlex hose (1/2" female flare side) to the house GN₂ system or portable GN₂ cylinder.

e: This step will require additional fittings such as 1/2" male flare fitting and compression fittings.

 Flow GN₂ (20 psi / 1.38 bar) through the UltraDoser body for approximately ten minutes before system start up.

The supply pressure reading on the 2K controller may read $12 \pm psi$ due to the added GN_2 pressure.

When purging the UltraDoser unit, it will vent heavily and there will be a steady stream of "fog" from the vent. This "fog" will be cold to the touch if the internal temperature of the UltraDoser unit is still at or near LN_2 temperatures (-320°F / -196°C). Once the UltraDoser unit is at or near ambient temperature, the "fog" will warm up.

System Start Up

- 1. Place the On/Off switch on the 2K controller in the "On" position. Ensure the "Dosing Disable" push button is pushed in to disable dosing.
- 2. Insert the supplied 10 micron filter into the male bayonet on the supplied CFlex hose using a 1/8" allen wrench.
- 3. Attach the CFlex hose (male bayonet side) to the UltraDoser unit with the supplied bayonet clamp and gasket.
- 4. Attach the CFlex hose (female flare fitting side) to the 22psi LN_2 Dura-Cyl[®] liquid cylinder.
- 5. Open the liquid valve (counter-clockwise direction) on the Dura-Cyl cylinder.
- 6. Wait until the UltraDoser unit is filled with liquid nitrogen, approximately 10 minutes.
- 7. Adjust the dosing parameters. See 2K Controller Adjustments section for additional information.
- 8. Pull out the "Dosing Disable" push button to enable dosing.

When the UltraDoser unit is filling, it will vent heavily and there will be a steady stream of "fog" from the vent. Once the UltraDoser unit is filled, there will be a "wisp" of fog coming from the vent. If the UltraDoser unit overfills and liquid nitrogen starts dripping out the vent, close the liquid valve on the Dura-Cyl liquid cylinder and call Chart service at +1-408-371-4932.

System Shut Down

- 1. Place the On/Off switch on the 2K controller in the "Off" position.
- 2. Shut the liquid valve (clockwise direction) on the Dura-Cyl cylinder.
- 3. If possible, purge with GN₂ until next use (see Purging with Gaseous Nitrogen for further information).

Note: The supply pressure reading on the 2K controller may read $12 \pm psi$ due to the added GN_2 pressure.

Liquid Cylinder Change Out Procedure

The Dura-Cyl liquid cylinder will need to be changed out from time to time. The operator should visually check the gauges on the Dura-Cyl cylinder to monitor the internal liquid level. When the gauges read low levels, it must be swapped with a full Dura-Cyl liquid cylinder.

- 1. Shut the liquid valve (clockwise direction) on the Dura-Cyl cylinder.
- 2. Disconnect the CFlex hose from the liquid cylinder using a 7/8" open end wrench or adjustable crescent wrench.
- 3. Connect the CFlex hose to the liquid outlet on the full liquid cylinder using a 7/8" open end wrench or adjustable crescent wrench.

The UltraDoser 2K system will continue to dose properly until the liquid level inside the UltraDoser unit runs low. This feature gives the operator a reasonable window in which to change out the Dura-Cyl liquid cylinder without disrupting the production operation.

Bulk Tank (House Fed) System

Note: LN_2 is $-320^{\circ}F$ ($-196^{\circ}C$). Any water and/or moisture can cause ice which will affect the performance of the UltraDoser 2K system. Providing a positive pressure of GN_2 (also known as purging) to the UltraDoser unit before introducing LN_2 into the body will eliminate many performance interruptions.

Purging with Gaseous Nitrogen

The UltraDoser unit must only be purged with gaseous nitrogen. Chart recommends the UltraDoser unit be purged when not in use. However, this may not be practical for all operators. At a minimum, the UltraDoser unit should be purged to eliminate any water that may be inside the unit after installation and prior to startup. The UltraDoser reservoir may also require purging when there is liquid nitrogen flowing out of the vent. The UltraDoser reservoir must also be purged when the nozzle becomes frozen shut.

This section assumes a Y-Patten valve and Purge Kit are installed upstream of the UltraDoser unit. Chart highly recommends each UltraDoser 2K be installed with a Y-Pattern valve and Purge Kit to isolate the UltraDoser unit from the LN_2 source and to purge the UltraDoser unit to eliminate performance interruptions.

A dedicated GN_2 source is required to purge the UltraDoser unit. Chart recommends a dedicated GN_2 source from the facility.

- 1. Manually close (clockwise) the Y-Pattern valve (blue handle).
- 2. Manually open (clockwise) the ball valve (yellow handle) on the Purge Kit.
- On the 2K controller, go to "Maintenance" "Maintenance Modes" screen and 'Disable' the dosing valve.
- 4. Manually close (clockwise) the valve (silver nut) on the UltraDoser arm and power "Off" the 2K controller.

Y-Pattern Valve with Heated Purge Kit Assembly

The supply pressure reading on the 2K controller may read $12 \pm psi$ due to the added GN, pressure.

Note:

When purging the UltraDoser unit, it will vent heavily and there will be a steady stream of "fog" from the vent. This "fog" will be cold to the touch if the internal temperature of the UltraDoser unit is still at or near LN_2 temperatures (-320°F; -196°C). Once the UltraDoser unit is at or near ambient temperature, the "fog" will warm up.

System Start Up

This section assumes the Chart Phase Separator is full of liquid nitrogen. If this is not the case, ample time is needed to fill the Chart Phase Separator with liquid nitrogen before the UltraDoser 2K can start up.

- 1. Manually close (counter-clockwise) the ball valve (yellow handle) on the Purge Kit.
- 2. Manually open (counter-clockwise) the Y-Pattern value (blue handle) to start the flow of LN_2 .
- 3. As the UltraDoser fills, remove the dosing head heater and nozzle. Clean and dry both before reinstalling.
- 4. Wait until the UltraDoser unit is filled with liquid nitrogen, approximately 10 minutes, before dosing.

When the UltraDoser unit is filling, it will vent heavily and there will be a steady stream of "fog" from the vent. Once the UltraDoser unit is filled, there will be a "wisp" of fog coming from the vent. If the UltraDoser unit overfills and liquid nitrogen starts dripping out the vent, close the Y-Pattern valve and call Chart service at +1-408-371-4932.

System Shut Down

- 1. Manually close (clockwise) the Y-Pattern valve (blue handle).
- 2. Manually open (clockwise) the ball valve (yellow handle) on the Purge Kit.

e: The supply pressure reading on the 2K controller may read 12 ± psi due to the added GN, pressure.

- On the 2K controller, go to "Maintenance" "Maintenance Modes" screen and 'Disable' the dosing valve.
- 4. Manually close (clockwise) the valve (silver nut) on the UltraDoser arm and power "Off" the 2K controller.

When purging the UltraDoser unit, it will vent heavily and there will be a steady stream of "fog" from the vent. This "fog" will be cold to the touch if the internal temperature of the UltraDoser unit is still at or near LN_2 temperatures (-320°F; -196°C). Once the UltraDoser unit is at or near ambient temperature, the "fog" will warm up.

Service and Maintenance

Nozzle Change Out Procedure

- 1. Remove the dosing head heater.
- 2. Insert the nozzle tool into the nozzle area until the tool connects with the nozzle (Image 18).
- 3. Remove the nozzle with the driver in a counterclockwise direction.
- 4. Once the nozzle is removed, place the new nozzle or cleaned nozzle into the nozzle tool and insert in a clockwise direction (Image 19).

Caution! The dosing head heater may still be in operation. Do not expose skin to prolonged contact with the dosing head heater. The maximum temperature of the dosing head heater is 150°F (65°C).

Caution! Always perform nozzle change out procedures before introducing LN₂ into the UltraDoser unit. Failure to do so may cause the nozzle to unthread and fall out.

If the nozzle does not loosen easily, drain the UltraDoser unit through the drain plug and warm up nozzle with a low voltage heat gun.

Nozzle Cleaning Procedure

- 1. Remove the nozzle from the UltraDoser unit.
- 2. Clean the nozzle opening with a very thin wire and blow dry nitrogen through it.
- 3. Thoroughly dry the nozzle with dry nitrogen gas before re-installing.

Caution! Any moisture left on the nozzle will immediately freeze up when the nozzle is re-installed which may cause the nozzle to unthread and fall out.

Purging with Gaseous Nitrogen

The UltraDoser unit must only be purged with gaseous nitrogen. Chart recommends the UltraDoser unit be purged when not in use. However, this may not be practical for all operators. At a minimum, the UltraDoser unit should be purged to eliminate any water that may be inside the unit after installation and prior to startup. The UltraDoser reservoir may also require purging when there is liquid nitrogen flowing out of the vent. The UltraDoser reservoir must also be purged when the nozzle becomes frozen shut.

Troubleshooting

Refer to the table below for troubleshooting procedures. The table is arranged in a Symptom/Possible Cause/Solution format. Note that possible causes for specific symptoms are listed in descending order of significance. That is, check out the first cause listed before proceeding to the next. If you need further assistance please contact Chart's service team at 1-408-371-4932.

Symptom	Possible Cause	Solution
The safety relief valve is venting.	The pressure of the LN ₂ supply is greater than 50 psi (3.44 bar).	Check the pressure of the LN ₂ supply. If the supply pressure is greater than 50 psi (3.44 bar), reduce the supply pressure. **Note: A cylinder can be vented to reduce the pressure.
	The vent is obstructed.	Check the UltraDoser unit vent. If the vent is obstructed, clear the obstruction. If the vent is obstructed with ice, contact Chart's service team 1-408-371-4932.
Liquid is coming out of the vent.	The LN_2 supply pressure is too high.	Lower LN ₂ supply pressure to 22 psi (1.5 bar) or lower.
	Ice has developed inside the unit, causing the internal float valve to malfunction.	The UltraDoser unit must be drained of liquid and allowed to warm up over a minimum of 24 hours with a continuous purge of warm nitrogen gas. Contact Chart's service team at 1-408- 371-4932 for a detailed procedure.
Liquid is coming out of the dosing head even though the valve is shut closed.	The LN_2 supply pressure is too high.	Reduce the LN ₂ supply pressure.
	The valve seat is contaminated (ice or particles).	The UltraDoser unit must be drained of LN_2 . The dosing valve assembly must be removed and cleaned. Contact Chart's service team at 1-408-371-4932 for a detailed procedure.
	Air supplied to the solenoid is reversed.	Reverse the LN_2 lines that supply and vent to the solenoid.
No liquid from the dosing head.	There is insufficient liquid inside the UltraDoser unit.	Check the level of LN ₂ . If the level is empty or low, open the supply valve.
	The unit is disabled.	Pull out the Dose Enable switch to enable mode (ensure switch is not lighted).
	The nozzle is frozen shut.	Run Quick Service to thaw nozzle. Remove, clean, and re-install the nozzle.
	The bottle detect sensor is not detecting a container.	Check sensor connections. Ensure the sensor is correctly positioned to detect points (gear tooth or the like) if necessary, replace sensor.
	The speed sensor is not functioning.	Check if the speed sensor/encoder is operating correctly and is sending a signal to the 2K controller.

Symptom	Possible Cause	Solution
The dosing valve fault error is displayed on the 2K Controller.	The dosing valve assembly is not moving.	Check the pneumatic pressure. There must be approximately 60-70 psi (4.13-4.82 bar) for the dosing valve to function correctly.
The speed sensor fault error is displayed on the 2K Controller.	The speed sensor (or encoder) has been dislodged.	Check speed sensor (or encoder) connections.
	The speed sensor (or encoder) has malfunctioned.	Replace speed sensor (or encoder).

Specifications

UltraDoser Technical Specifications

Materials	Stainless Steel Series 300*
Weight	32 lbs (14.5 kg)
Body Dimensions	18"H x 6"W (457.2 x 152 mm)
Dosing Head Dimensions	9.5"H x 2"W (241 x 50.8mm)
Arm Reach	12"-18" (304.8 - 457mm)
Head Pressure	0.45 psi (0.03 bar)
Nozzles	Ships with 0.040", 0.050", 0.060"
	0.020" - 0.100" available (0.005" increments)
System Utilities	Liquid Nitrogen: 3 - 22 psi (02 1.5 bar)
	Gaseous Nitrogen: 60-100 psi (4.1 - 6.9 bar)
	Electricity: 110-240V AC; 50/60Hz, 110W
Steady State Consumption	0.04 gal (0.15 liter) / hour
EP Head Compatible	Yes
Vacuum Insulated	Yes
SoftDose [™] Compatible	Yes
Crate Dimensions	58"L x 58"W x 24"H (1473 x 1473 x 609mm)
	300 lbs (136kg) with support stand
	225 lbs (102kg) without support stand

Controller Technical Specifications

PLC Platform	Allen-Bradley or Siemens
Display	7" (178mm) TFT Color LCD Touch Screen
Dose Duration	5.5 to 1000 mS (0.1 mS intervals)
Dose Volume	0.002 to 14 grams/dose
Max Discrete Dosing	2000* cpm (120,000 cph)
Accuracy	± 2% of dose weight
Certifications	CE, NEMA, 4X
MicroDose [™] Technology	Yes
Line Speed Auto Detect	Yes
Electronic Dose Targeting	Yes
Fixed Delay Mode	Yes
Speed Compensated Mode	Yes
Multiple Languages	Yes
RemoteDose [™] Capable	Yes
IntelliDose [™] Capable	Yes
Recipe Storage	Yes

*Results obtained under specific conditions

UltraDoser Body Dimensions

6.0 [152.4]

*304 standard, 316L available upon request

UltraDoser 2K Components

UltraDoser Body

The stainless steel vacuum insulated reservoir provides a ready supply of LN_2 for dosing operations.

Distribution Block

Houses the electrical connectors and wiring interfaced between the operating parts of the UltraDoser unit and the 2K controller.

2K Controller

2K controller dictates the dosing operation of the system.

Inlet Filter

A 10 micron stainless steel inlet filter is provided. The filter needs to be installed inside the male bayonet inserted into the UltraDoser unit.

Bayonet Connection

This bayonet connection allows the CFlex hose or vacuum insulated pipe to connect to the UltraDoser unit. Bayonets are vacuum insulated and provide a warm, frost-free connection.

Mounting Bracket Assembly

The UltraDoser unit is supplied with a mounting bracket assembly. The assembly consists of the bracket attaching to the UltraDoser unit and two clamps. These clamps are designed to fit on Chart's support stand or $1\frac{1}{2}$ " stainless steel rod.

Dosing Head

The dosing head delivers the dose of LN₂.

Dosing Valve Assembly

The dosing valve assembly contains the solenoid coil, the electromagnetic core with the valve stem, the return spring and the sealed valve housing.

Valve Confirm Assembly

The valve confirm assembly is attached to the pneumatic cylinder. The assembly consists of an electromagnetic sensor and related cabling. The sensor confirms that the valve stem was lifted thereby providing a dose of LN_2 .

Dosing Head Heater

The UltraDoser unit has a self-regulating dosing head heater. The maximum temperature of the dosing head heater is 150°F (65°C) and prevents frost or ice formation at the dosing head area. The heater is held in place by a set of o-rings. If needed, the dosing head heater can be removed by slipping it off of the dosing head.

The dosing head heater has a built-in splash guard to minimize the dosing nozzle's exposure to splashed product or LN_{2} .

Dosing Nozzle(s)

The size of the dosing nozzle directly affects the amount of LN_2 dosed. 0.040", 0.050" and 0.060" nozzles ship loose with the UltraDoser 2K system. Custom sizes may be ordered from Chart.

Drain Plug

A drain plug is located on the back of the UltraDoser unit. When removed, this allows the LN_2 to drain from the UltraDoser body.

Vent Heater

The UltraDoser unit has a self-regulating vent heater. The maximum temperature of the vent heater is 150°F (65°C) and prevents frost or ice formation at the vent area. The heater is held in place by a set of o-rings. If needed, the vent heater can be removed by slipping it off of the vent area.

Optional Components

ElectroPneumatic (EP) Actuated Valve

The Electro-pneumatic actuator assembly contains the dosing stem, solenoid valve and Bimba-cylinder all within a self-contained water-tight housing. The main benefit is ease of use during Clean-In-Place (CIP) operations. The solenoid valve rests on the pneumatic cylinder. The cold GN_2 running through the valve has a cooling effect on the cylinder offsetting some of the heat generated by the opening and closing of the actuator.

CFlex Hose

A vacuum insulated hose that provides a connection between the UltraDoser unit and the LN₂ supply.

Common Replacement Parts

Item No.	Part Description	Part Number	
UltraDoser Parts			
1	UltraDoser Body	15170	
2	Head Assembly		
2.1	EP Head Assembly (Optional)	1005	
2.1.1	Dosing Stem (Valve) Assembly (for EP Head)	670.38	
2.1.2	Solenoid Valve Spare Assembly (for EP Head)	670.42	
2.2	Head Assembly (Standard)		
2.2.1	Dosing Stem (Valve) Assembly (for Standard Head)	141	
2.2.2	Solenoid Valve Spare Assembly (for Standard Head)	535	
2.3	Electric Actuator		
3	Dosing Head Heater (no cable included)	106C	
4	Vent Heater Assembly (no cable included)	105C	
5	Distribution Block	571	
6	Vent Heater Cable - 4mt (D-1)	105C.01	
7	Nozzle (Dosing Head) Heater Cable - 1.2mt (D-2)	1411	
8	Timing / Container Sensor Cable Assembly - 2mt (D-3)	2440.16	
9	Dose Solenoid Cable - 1.5mt (D-4 for Std Head)	2045	
10	Dose Solenoid Cable - 1.5mt (D-4 for EP Head)	323	
11	Confirm Sensor Cable - 1.5mt (D-5 for Std Head)	1201	
12	Confirm Sensor Cable - 1.5mt (D-5 for EP Head)	323	
13	75 Micron, 1/8" M x F Snubber	160	
14	SRV, 50 psi	211	
15	Distribution Block Cable - 5mt	577	
Sensors			
16	Complete Sensor Bracket Assembly (install at UltraDoser head)	1422	
17	12mm Inductive Proximity Sensor (Speed & Timing Sensor)	2807	
18	SICK Programmable Encoder Assembly	2870.25	
19	SICK Encoder Cable Assembly 33'	2870.33	
NOT SHOWN	18mm Photoelectric Sensor (default Bottle Detect Sensor)	2870.10	
NOT SHOWN	18mm Sensor Support Hardware (use with PN 1422)	694	
2K Controller	Parts		
20	Controller Assembly - 2KS (Siemens)	2880	
20	Controller Assembly - 2KA (Allen Bradley)	2870	
21	Controller Mounting Assembly	2384	
22	Controller Power Cord Assembly - 4mt	410	
Misc Parts	Misc Parts		
23	Doser Stand	119	
	Optional Doser 6' Stand	739	
24	Stand Base	326A	
NOT SHOWN	CFlex Fill Hose - 10ft	123S	
NOT SHOWN	Y-Pattern Manual Globe Valve	S60MYCD	
NOT SHOWN	Y-Pattern Purge Kit - Heated	6111	
	Dewar Purge Kit - Heated	6109	

Dewar Purge Kit - Heated

(5) DISTRIBUTION BLOCK

Sensor Positioning

Warranty

All sales of Liquid Nitrogen Dosing Systems ("LN₂ Dosing Systems") from Chart Inc. ("Chart") to the purchaser are subject to all applicable Chart standard terms and conditions in effect at the time of sale, unless otherwise agreed in writing by an authorized representative of Chart. In addition to the warranty stated in Chart's Standard Terms and Conditions of Sale, Chart warrants to the original purchaser of Chart manufactured LN₂ Dosing Systems that for two (2) years after the date of shipment to the original purchaser said Chart manufactured LN₂ Dosing Systems will maintain all performance standards for said LN₂ Dosing Systems as published by Chart on the date of invoice. Warranty replacements due to vacuum loss will also follow the same warranty period and regulations.

Purchaser agrees that as a pre-condition to any Chart warranty obligation hereunder, purchaser shall fully inspect the LN_2 Dosing Systems immediately upon delivery to purchaser and shall give Chart written notice of any claim or purported defect within ten (10) days after receipt of the LN_2 Dosing Systems. As a further pre-condition to any Chart warranty obligation hereunder, purchaser shall return said purportedly defective LN_2 Dosing Systems, freight prepaid, to the plant of the manufacturer within thirty (30) days after receipt of the LN_2 Dosing Systems. Chart shall inspect the returned LN_2 Dosing Systems, and, if said LN_2 Dosing Systems is found defective, shall, at Chart's option as purchaser's sole and exclusive remedy, either (i) repair or replace such LN_2 Dosing Systems or any defective component or part thereof which proves to be defective, or (ii) refund the net purchase price paid by the original purchaser. Alterations or repairs by others or operation of such LN_2 Dosing Systems in a manner inconsistent with Chart accepted practices and all operating instructions, unless preauthorized in writing by Chart, shall void this warranty. This warranty does not extend to defects caused by the effects of normal wear and tear, erosion, corrosion, fire, or explosion.

Chart's sole and exclusive liability under this Warranty is to the original purchaser and shall not exceed the lesser of the cost of repair, cost of replacement, or refund of the net purchase price paid of the LN₂ Dosing Systems by the original purchaser. Chart is not liable for any other losses, damages, or costs of delays, including incidental or consequential damages. CHART SPECIFICALLY MAKES NO WARRANTIES OR GUARANTEES, EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE, OTHER THAN OR WHICH EXTEND THOSE WARRANTIES EXPRESSED HEREIN. The original purchaser shall indemnify, defend and hold Chart harmless from any third party claims as a result of the use, sale, or lease of the LN, Dosing Systems.

Appendix A

The following wiring diagrams are the 2KA (Allen Bradley) Controller Wiring Diagram and the 2KS (Siemens) Controller Wiring Diagram respectively.

NOTE; All cabeling 22 ga. (Unless noted)