SIPHON 100

FILL PLANT BULK STORAGE SYSTEM – 100% OF THE PRODUCT 100% OF THE TIME

Chart has engineered the Siphon 100° Bulk Storage Tank to provide an economical, reliable and high-performance storage system for pump filling high-pressure cylinders, liquid cylinders and transports. Current cryogenic tanks have worked for years, but increased efficiencies are now available with the Siphon 100 system allowing you to utilize 100% of the liquid contents.

The Siphon 100 system combines two revolutionary technologies in cryogenic bulk tanks. Its improved "thermal-siphoning" system reduces and efficiently reprocesses the heat from pumping. Additionally, this system's Composite Super Insulation™ is 30% to 70% more efficient than Perlite in reducing the effects of heat transfer from the atmosphere.

PRODUCT ADVANTAGES

- Thermal-siphon design manages heat from pump cool down, keeping storage tank pressure down
- Simple and reliable automatic pump start-up in three minutes
- Pump priming at tank pressure of 10 psi (0.69 bar) or less without the necessity for pressure building*
- Vacuum insulated pod provides colder liquid to pump reducing cavitation
- Extended legs add head pressure to pump without increasing liquid inventory for improved pump performance
- Reduce liquid cylinder & Orca™ MicroBulk Delivery System filling losses
- · Longer life of high-wear pump parts
- Capability to operate two pumps at once (liquid and HP pump)
- Adapters available to match all standard pumps
- Inner vessel designed and built to ASME Section VIII Division 1 code
- * Pump filling only. Add pressure builder if liquid filling large quantities from Siphon 100 tank.

SIPHON 100_®

FILL PLANT BULK STORAGE SYSTEM - 100% OF THE PRODUCT 100% OF THE TIME

Model	Gross Gal	Capacity Liters	Net C Gal	apacity Liters	MA\ psig	NP* bar	Dia: in	meter mm	He in	eight mm	Wei	ght** Kg	NER % /day in O ₂ / Ar	NER % /day in N ₂
VS 1500SC	1,640	6,208	1,580	5,981	250	17.2	66	1,676	240	6,096	6,200	2,818	.35	.56
VS 3000SC	3,150	11,924	3,030	11,470	175	12.1	86	2,184	271	6,883	12,800	5,810	.25	.40
VS 6000SC	6,010	22,750	5,770	21,842	175	12.1	86	2,184	425	10,795	21,300	9,660	.15	.24
VS 9000SC	9,354	35,410	8,990	34,031	175	12.1	114	2,896	398	10,109	32,100	14,560	.10	.16
V\$ 11000SC	11,410	43,192	10,960	41,438	175	12.1	114	2,896	457	11,608	37,900	17,191	.10	.16
VS 13000SC	13,470	50,989	13,060	49,437	175	12.1	114	2,896	516	13,106	44,300	20,094	.10	.16
VS 15000SC	15,520	58,750	15,060	57,008	175	12.1	114	2,896	575	14,605	50,600	22,952	.10	.16

^{*} MAWP - Maximum Allowable Working Pressure. ** Weights are for ASME design. (NER) = Normal Evaporation Rate

	Nomen	clatu	re
C-1	Connection, Aux Liquid	PSV-1A	Pre
C-2	Connection, Aux Vapor		Ir
C-3	Connection, Secondary Aux Liquid	PSV-1B	Pre I
C-4	Connection, Secondary	S-2 TSV-2	Stra
CV-1	Aux Vapor Check Valve, Fill Line	TSV-6	The
FC-1	Connection Fill	VP-1	Vac
HCV-1	Valve, Bottom Fill	VR-1	Vac
HCV-2	Valve, Top Fill		Οι
HCV-4	Valve, Full Trycock	OPTIONA	ιv
HCV-5	Valve, Vacuum Gauge Tube	HCV-3	Val
HCV-7	Valve, Fill Line Drain	HCV-11	Valv
HCV-8	Valve, LI-1 Vapor Phase	HCV-11	
HCV-9	Valve, LI-1 Equalization	HCV-16B	
HCV-10	Valve, LI-1 Liquid Phase	PBC-1	Pres
HCV-12	Valve, Vapor Vent	PCV-1	Pre
HCV-15	Valve, Safety Relief Selector		Inr
HVC-19	Valve, Aux Vapor	PCV-3	Pre
HCV-25A			Ва
HCV-25B		S-1	Stra
HCV-26A		TSV-3	The
HCV-26B	Valve, VS-Siphon Feed		PE
LI-1	Level Indicator, Inr Ves	TSV-4	The
PI-1	Pressure Indicator, Inr Ves		PE
PSE-1A	Press Safety Element, Inner Ves.	HCV-21	Valv
PSE-1B	Press Safety Element, Inner Ves.	HCV-22	Liqu Valv
		1	1/

	PSV-1A	Pressure Safety Valve, Inner Vessel
	PSV-1B	Pressure Safety Valve, Inner Vessel
	S-2	Strainer, Fill Line
	TSV-2	Thermal Safety Valve, Fill
	TSV-6	Thermal Safety Valve, Fill
	VP-1	Vacuum Port
	VR-1	Vacuum Readout, Outer Vessel
e	OPTIONA	L VALVES (Dashed Lines)
е	HCV-3	Valve, PB Inlet
	HCV-11	Valve, PB Outlet
	HCV-16A	Valve, Relief Line Purge
	HCV-16B	Valve, Relief Line Purge
	PBC-1	Pressure Bldg Coil, Inr Ves
r	PCV-1	Pressure Control Valve, Inr Ves
	PCV-3	Pressure Control Valve,
'n		Back Pressure
'n	S-1	Strainer, Pressure Builder
	TSV-3	Thermal Safety Valve, PB Circuit
s	TSV-4	Thermal Safety Valve, PB Circuit
	HCV-21	Valve, Secondary Aux,
		Liquid, Installed at C-3
	HCV-22	Valve, Secondary Aux
		Vapor, installed at C-4

